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Abstract

We consider the problem of generating a map between
two triangulated meshes, M and M’, with arbitrary and
possibly differing genus. This problem has rarely been
tackled in its generality. Early schemes considered only
topological spheres. Recent algorithms allow inputs with
an arbitrary number of tunnels but require M and M’ to
have equal genus, mapping tunnel to tunnel. Other schemes
which allow more general inputs are not guaranteed to work
and the authors do not provide a characterization of the in-
put meshes that can be processed successfully. Moreover,
the techniques have difficulty dealing with coarse meshes
with many tunnels.

In this paper we present the first robust approach to build
a map between two meshes of arbitrary unequal genus. We
also provide a simplified method for setting the initial align-
ment between M and M, reducing reliance on landmarks
and allowing the user to select “landmark tunnels” in ad-
dition to the standard landmark vertices. After computing
the map, we automatically derive a continuous deformation
from M to M’ using a variational implicit approach to de-
scribe the evolution of non-landmark tunnels.

Overall, we achieve a cross parameterization scheme
that is provably robust in the sense that it can map M to M’
without constraints on their relative genus or on the density
of the triangulation with respect to the number of tunnels.
To demonstrate the practical effectiveness of our scheme we
provide a number of examples of inter-surface parameteri-
zations between meshes of different genus and shape.

1 Introduction

Cross parameterizations are maps between two input
meshes that play a key role in geometry processing algo-
rithms such as morphing, attribute transfer and mesh blend-
ing. The key factors that affect the quality of the map in-
clude the initial placement of landmark vertices (hard con-

straints that the final mapping must maintain), mesh geom-
etry and mesh topology. In this paper we focus on the role
of topology in the mapping. Depending on the input model,
topological structures may or may not be desired features
in the map. For example, model acquisition can introduce
small tunnels in the mesh that do not reflect the topology of
the original object. We provide a flexible system that mini-
mizes the adverse impact topology can have on the cross pa-
rameterization. Our approach has several advantages over
previous techniques:

e We provide the first provably robust method to gener-
ate mappings between meshes of arbitrary and differ-
ent genus.

e We extend Morse theory to provide a formal frame-
work to analyze and compare cross parameterization
methods.

e We provide a completely parametric system that is not
affected by convoluted geometry.

e We propose a novel initial alignment scheme which re-
duces the total number of landmarks required.

The rest of the paper is outlined as follows. Related work
is introduced in §2 and theoretical foundations are discussed
in §3. We introduce a formalization in §4 that provides a
framework to guarantee robustness and discuss our imple-
mentation §5. Results and future work are discussed in §6
and §7.

2 Related Work

Our approach relates to techniques developed in several
different fields. We extend Morse theory to provide a for-
mal characterization of parameterization methods. More-
over, we use ideas from genus reduction, previous cross pa-
rameterization methods and functional morphing schemes.
Here we discuss related work in each of these fields, limit-
ing discussion to topics most relevant to this paper.



Morse Theory. Morse theory characterizes the invariants
of a manifold M in terms of the topology of a function f
defined on M. The work of [26] details how to minimize
the number of critical points of f to describe the genus of
M. A skeleton of the shape of M is provided by the Reeb
graph which is the contraction of the components of level
sets of f to points. In recent years Reeb graphs have been
used as a search key in shape databases [18], as well as to
characterize complex scientific data [6]. They provide a sur-
face based method for genus reduction [28, 23, 35] that does
not require conversion of input models as in volumetric ap-
proaches [36, 34, 27]. The notion of persistence was intro-
duced in [10] and is used to rank the importance of topolog-
ical features [17, 2]. Jacobi sets are defined in [7] and have
been used to explore scientific data sets with multiple fields
[8]. In this paper we introduce the notion of a Morse field to
formally characterize the correctness of a parameterization
method.

Mesh Parameterization. Surface parameterizations are
bijective maps from a given input mesh to a standard para-
metric domain that attempt to minimize both conformal and
metric distortions. A thorough exposition on the funda-
mentals of surface parameterization can be found in [12].
The parametric domains of surface mesh parameterization
algorithms vary according to the genus of the input mesh.
Closed surface genus-0 meshes can be parameterized to
spherical domains using extensions of planar techniques
[14, 29, 31, 13]. Meshes of arbitrary genus can be mapped
to the plane [15, 3] or to a topologically equivalent base
domain [20, 21, 30]. Recent work [23] maps meshes of ar-
bitrary genus y to a series of v + 1 spherical domains. One
of these domains represents a positive surface while the re-
maining v are negative surfaces. The original mesh surface
is obtained via boolean difference operations.

Cross Parameterization. Cross parameterizations deter-
mine a bijective mapping between a source mesh and a tar-
get mesh. Many of the existing approaches [30, 21, 3, 22]
require that the source and target be of the same genus. The
methods of [30, 21] find compatible base triangulations on
the input models. The work presented in [21] is guaranteed
to work only on genus zero meshes, while the approach of
[30] finds a maximal non-separating cut graph on each in-
put mesh, guaranteeing the success of their algorithm on
meshes of higher genus. The work of [3] addresses the
homotopy type of a mapping and provides a framework to
compute many canonical cuts rather than a single cut graph.

The methods of [5] and [23] allow for maps between
meshes of different genus. [5] requires the user to manually
specify control meshes with the same number of faces for
both the source and target. The recent work of [23] param-
eterizes meshes of genus v via a single “positive” spherical

parameterization and 7y “negative” spherical parameteriza-
tions. The approach works well in many cases, however
suffers from several key issues. During genus reduction two
boundary loops are computed per tunnel and fine detail in
the original mesh may be lost due to the removal of mesh
faces between the boundary loops. Pseudo-negative meshes
are generated for non-landmark tunnels, however the au-
thors do not provide details on their creation. Furthermore,
the algorithm fails on meshes with complicated geometry.

Functional Morphing Techniques. Morphing algo-
rithms can be arranged into two different categories: cross-
parametric and functional approaches. Functional ap-
proaches do not maintain the mapping between source and
target meshes, yet they naturally handle morphing between
meshes of unequal genus. The approach of [33] generates
a morph sequence between a series of models by comput-
ing a distance function for each model. The surface at a
given times step is an extremal surface extracted from the
weighted average of the functions associated with the input
models. The work of [32] computes a variational implicit
function in dimension n+ 1 to solve for the morph sequence
between two n-dimensional objects (time is the additional
dimension).
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Figure 1. A vertex is classified by its lower link. Here,
simplices in the lower link are drawn in red.

3 Foundation

For completeness we briefly introduce mathematical
concepts related to Morse theory and variational implicit
functions that are used throughout this paper.

Morse theory. A k-simplex is the convex hull of k + 1
affinely independent points. A triangulation M of a 2-
manifold is a set of 0, 1, and 2 simplices commonly called
vertices, edges, and faces. A piecewise linear (PL) func-
tion f on M is defined by a set of scalar values at the ver-
tices that are extended over the edges and faces of M via
linear interpolation. The function f is assumed to be non-
degenerate (all function values at vertices are unique) and
Simulation of Simplicity [11] guarantees this through sym-
bolic perturbation.

The star of a vertex v consists of all simplices in M that
contain v and the link of a vertex v, denoted Lk(v), consists
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Figure 2. A 2-manifold and a corresponding Reeb graph with critical point pairs labeled.

of those simplices in the star of v that do not contain v. The
lower link, Lk_(v), are those vertices v; € Lk(v) such that
f(vi) < f(v) and the edges 7;v; such that f(v;) < f(v)
and f(v;) < f(v). The upper link, Lk (v) is defined in an
analogous fashion.

The criticality of a vertex with respect to f is defined
in terms of its link as demonstrated in figure 1. A vertex
is regular if its lower link is a non-empty connected seg-
ment of the link. The lower link of a minimum is empty and
the lower link of a maximum consists of the entire link. A
k—fold saddle consists of k 4+ 1 components along the link
with & > 1. The value of f at a critical point is called a
critical value and a level set of f containing a critical point
is called a critical level set.

A Morse function is a function f that satisfies two con-
straints: (1) all critical points are non-degenerate and (2) for
all critical points p # g, f(p) # f(q). Morse theory pro-
vides techniques to explore the topology of a manifold M
via functions defined on the manifold [25, 24].

The Euler characteristic x relates the genus v of M to
the critical points of f:

X = minima — saddles + maxima = 2 — 2y

If f has a single minimum and a single maximum, then
it has 2+ saddles, or 2 saddles per tunnel. The level sets
of f undergo topological changes at the critical points of
f. Level set components originate at minima and end at
maxima. Saddles are classified as split saddles (where a
single level set component splits into two components) and
merge saddles (where two level set components merge into
one). Split saddles and minima are referred to as parent
critical points and merge saddles and maxima are children.

The Reeb graph encodes the topology of the manifold.
It is the skeleton that remains when the components of the
level sets of f on M are contracted to points. It consists of a
series of nodes connected by arcs. The nodes correspond to

critical points in the mesh, and the arcs correspond to mesh
components. A sequence of arcs between a parent and child
critical point is called a component path.

Critical points are often ranked in importance by persis-
tence, defined as the difference in function value between
parent and child critical point pairs. Traditional persistence
[10] pairs split saddles with maxima and merge saddles with
minima. As seen in figure 2 extended persistence [1] pairs
the global maximum with the global minimum in addition
to the split and merge saddles associated with each tunnel
of the mesh. Note that simple component path traversal
does not guarantee a successful pairing of all critical points.
The mesh in figure 2 has “interleaved” tunnels where sim-
ple component path traversal of the Reeb graph beginning
at two different children terminates at the same parent.

The Jacobi set is the set of simultaneous critical points
of up to k functions on a k-manifold. Given two functions
f and g defined on a 2-manifold, the Jacobi set is the set of
all critical points of the restriction of f to the level sets of
g. These critical points occur when the gradients of f and
g are linearly dependent: V f + AV g = 0. In the piecewise
linear (PL) setting, functional extrema lie on mesh vertices
and the Jacobi set is comprised of mesh edges.

Figure 3. A 2-dimensional variational implicit function.

Variational Implicit Functions. A radial basis function
is a real-valued function whose value depends only on the
distance from a specified origin. In this paper we use the



radial basis function: p(x) = |x].

A k + 1-dimensional variational implicit function v [32]
is used to describe the evolution of k-dimensional objects
over time. It does this by minimizing a given energy while
satisfying a set of input constraints: t(c;) = h;. The input
constraints consist of two types: boundary (where v is zero)
and normal (where v is positive or negative). The function
1) can be expressed in terms of p:

b(x) = Y d;plx — ) + P(x)

j=1

Here c; are constraint locations, d; are weights and P(z)
is a degree one polynomial. The set of d; and P(x) that
satisfy the interpolation constraints can be expressed as a
linear system and the weights can be computed by solving
the system using the constraints as input:

hi =Y djp(ci — ;) + Plcs)
j=1

4 Formalization of the problem

In this section we introduce a formal framework to ana-
lyze the correctness of a parameterization method.

Definition 4.1. Let M be a 2—manifold and consider a pair
of Morse functions (f, g) defined on M. We call (f,g) a
Morse field if the following two conditions hold:

1. The non-critical level sets of f and g are 1-manifolds.

2. The restriction of f to the level sets of g and the re-
striction of g to the level sets of f are Morse functions.

The definition of a Morse field applies to the PL setting
where X is a 2—dimensional simplicial complex triangulat-
ing M and f, g are piecewise linear Morse functions. The
non-critical level sets of each function are piecewise linear
1-manifolds and the restrictions of f and g to each others’
level sets are piecewise linearly Morse functions.

Theorem 4.2. Iff (f, g) is a Morse field, then ® = (f,g) :
M — D is a bijective map from % to D, a topologically
equivalent base domain.

Proof. If f,g form a Morse field, then ® is a bijective
map from X to D: f and g are finite and continuous, and
cover D, therefore Vp' € D, there exists p € X such that
®(p) = p’. Assume by contradiction that Ip;,ps € X
such that p; # po and ®(p1) = P(p2). This implies that
f(p1) = f(p2) and g(p1) = g(p=2). Without loss of gener-
ality, assume that the the function f is restricted to a level
set of the function g. By definition, along this level set

g(p1) = g(p2) and f is Morse. Since p; # po and f is

Morse then f(p1) # f(p2). This is a contradiction, and
therefore ® is injective.

If ® is a bijective map from ¥ to D, then f,g form a
Morse field: Assume by contradiction that ® is a bijective
map from X to D, and without loss of generality that the re-
striction of f to a level set of g is not Morse. By definition,
along this level set g(p1) = g(p2). Since the restriction of
f to the level set of g is not Morse, there can exist p;, p on
this level set such that f(p;) = f(p2). This would imply
that for p; # pe2, ®(p1) = P(p2), however this is a con-
tradiction as by definition ® is a bijective map from X to
D. O

Theorem 4.2 provides a formal characterization of the
properties that f and g must satisfy to guarantee a bijec-
tive mapping. It is a useful exercise to consider the one-
dimensional case to clarify the result. A Morse function, f,
on a l-manifold M with boundary has a maximum and a
minimum that lie on the boundary and is strictly monotonic
between these two points. When M is closed and with-
out boundary, the maximum and minimum of f partition
M into two regions, along which f is strictly monotonic.
When M is without boundary a front/back bit is necessary
to disambiguate between the partitions defined by the criti-
cal points.

Figure 4. A minimal Jacobi set partitions M into two
topologically equivalent regions.

Assuming the functions f and g form a Morse field,
the 2-dimensional case is a natural extension of the 1-
dimensional case. In a Morse field the generic level sets of
f and g are 1—manifolds along which the restriction of the
other function is Morse. Just as the critical points of a single
function partition a closed 1-manifold in 1-dimension, the
Jacobi set of a Morse field defined on a closed surface mesh
M partitions M into two topologically equivalent regions.
We call the Jacobi set of a Morse field a minimal Jacobi set.
When M is of genus v a minimal Jacobi set consists of v+ 1
closed loops, see figure 4. There is one loop for each tunnel
in M and one loop along the perimeter or silhouette of M.
In a mesh of genus v > 0 each of these loops is non-trivial,
meaning it cannot be contracted to a point.

5 Robust Cross Parameterization

Algorithm Overview. Functions that form a Morse field
may be negatively impacted by the geometry of M, result-



Figure 5. A Jacobi loop (shown in red) is comprised of
paths traced between the associated parent and child sad-
dles in each of the tunnel’s components (shown in blue and
green).

ing in a parameterization of poor quality. We therefore con-
sider the minimal Jacobi set to be a guideline. We compute
~ non-trivial loops associated with the tunnels of M that
can be used to reduce the genus of the mesh. We call these
Jacobi loops as each one corresponds to a loop of a minimal
Jacobi set.

After Jacobi loops have been computed on both input
meshes M and M’, the user designates which mesh tun-
nels will remain features in the map by selecting landmark
tunnels in addition to traditional landmark vertices. Genus
reduction on each mesh is performed by cutting along the
non-landmark tunnel Jacobi loops. The resulting holes are
patched with scaffold faces and a common base partitioning
B of all landmark features is computed. During the con-
struction of B, a constrained silhouette is generated which
can be integrated into the final partitioning.

A metamesh containing attribute information for M and
M’ is computed by embedding both meshes in B. A base
patch P € B may contain one or more Jacobi loops associ-
ated with non-landmark tunnels (belonging to either M or
M”). We describe the evolution of non-landmark tunnels in
each such patch parametrically using a variational implicit
function 1, guaranteeing a robust evolution of tunnels re-
gardless of their respective geometry.

Genus Reduction. Morse theory provides the tools nec-
essary for genus reduction and, as such, functions must be
defined on both M and M’. The user provides an initial
coarse alignment of the input meshes via screen space ori-
entation. A fair Morse function [26] is generated for each
mesh using the screen height minimum and maximum of
the models as fixed input values. We employ Simulation
of Simplicity (SoS) [11] and split all saddles with degree
greater than 2 as described in [9].

The Reeb graph of each mesh is computed using the ap-
proach of [4] and parent/child critical point pairs are deter-

mined using the extended persistence algorithm of [1]. The
Jacobi loop for a tunnel is computed by tracing paths be-
tween the associated parent and child saddles in both of the
tunnel’s components, see figure 5. Paths are traced using a
restricted form of Dijkstra’s algorithm that is constrained to
simplices contained in the current component. We achieve
this by maintaining for each mesh face a list of the Reeb
graph components it spans.

When the triangulation is coarse in relation to the prox-
imity of the critical points, tracing shortest paths along mesh
edges will fail, see figure 6 (a). To address this we concep-
tually run Dijkstra’s on the dual mesh. Rather than trace
paths from parent v,, to child v, critical points, we trace
paths from parent to child critical faces. A parent critical
face lies in the star of v, and contains the current compo-
nent label. Child critical faces are defined in an analogous
fashion. Once the shortest face path, F'p, is found between a
parent and child face pair, we extract a final edge path from
F'p by splitting mesh edges that are incident on two faces
in Fp, see figure 6 (b). If a face is both a valid parent and
child we split the face as in 6 (c). Although the size of the
mesh near Jacobi loops increases, we avoid the reduction of
detail that can occur in previous methods [23].

Remark 5.1. Calculating paths in this manner guarantees
that regardless of the coarseness of the triangulation we are
able to find a Jacobi loop that does not intersect nor coincide
with any other Jacobi loop.
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Figure 6. (a) In a coarse triangulation the possible edge
paths between two different parent/child saddle pairs can
intersect (the green dashed edge). (b) Face paths are com-
puted between parent/child saddle pairs, from which a new
edge path is extracted. (c) Splitting a face path of length
one.

A mesh can be cut along a Jacobi loop, reducing its
genus by one. The cut creates two “holes” and two Jacobi



loops per tunnel. Each hole is filled with a patch of scaffold
faces that is proportional in size to the number of vertices in
the Jacobi loop. The positions of interior patch vertices are
assigned by solving a linear system of equations using the
positions of the Jacobi loop vertices as fixed input values.

Note that Jacobi loops can belong to one of two homo-
topy types. Specifically, a Jacobi loop can walk “around”
a tunnel or around the complementary handle, see figure 7.
The homotopy type of a Jacobi loop is dependent on the
function used to construct the Reeb graph and thus, con-
trol over the homotopy type of all Jacobi loops is achieved
by using different functions. The user orients the mesh and
is able to select a subset of the loops that result. The user
can then rotate the mesh to generate different loops for the
remaining tunnels. This process is repeated until v Jacobi
loops have been computed. In practice, we have found that
using more than one function is seldom necessary.

Figure 7. Jacobi loops can belong to one of two homo-
topy types. Shown in red, the Jacobi loop on the left walks
“around” the tunnel and the Jacobi loop on the right walks
around the complementary handle.

Constrained Silhouette. A minimal Jacobi set contains
~ + 1 non-trivial loops. These include the v Jacobi loops
and an additional non-trivial loop along the silhouette of the
model that partitions it into two topologically equivalent re-
gions. Prior to constructing a common base partitioning B
we compute an additional loop that the user can choose to
integrate into B. This loop is called the constrained sil-
houette and is computed by calculating the Jacobi set of
the screen space coordinate functions, x and y of the user-
oriented input meshes. Using the approach of [7], we obtain
a series of closed loops on the mesh, one of which contains
global functional extrema. From these closed loops we con-
struct a constrained silhouette that satisfies the following
two properties:

1. It must contain the global extremal vertices of each
function: Zpin; Tmaz: Ymin, Ad Ymaz-

2. It may not intersect with any Jacobi loops.

Screen space coordinate functions rarely form a Morse
field and, as a result, the Jacobi set is not minimal and may
may violate condition (2). The loops may be jagged and

“wind” extraneously along the mesh and/or self intersect,
see figure 8.
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Figure 8. On the left the Jacobi set of a statue winds and
self-intersects. The constrained silhouette on the right (red)
does not intersect any of the Jacobi loops (blue).

To generate a constrained silhouette that satisfies both
conditions, we calculate four distinct shortest paths:
10 Ymawzs Ymaz 10 Tmazs Tmaz 1O Ymin, and Ymin 10 Tmin.
We label the set of all mesh edges as E, and the set of edges
belonging to a Jacobi loop are labeled E'r. All edges be-
longing to the Jacobi set and the neighbors of those edges
are labeled E;. To guarantee robustness against coarse
triangulations we compute the constrained silhouette in a
manner analogous to that which is used to compute Ja-
cobi loops. Specifically, a restricted version of Dijkstra’s
algorithm is used to trace paths on the dual mesh. We
first attempt to find the shortest face path whose coincident
edges belong to F 7\ Er. When this is not possible we find
the shortest face path with coincident edges belonging to
E\E7 (this is always possible as all Jacobi loops are non-
separating). The constrained silhouette consists of the four
edge paths extracted from these face paths.

Base Partitioning. A common base partitioning B of all
landmark vertices is computed by tracing consistent pairs of
paths between feature vertices in M and M’ corresponding
to patch boundary edges in B. In a consistent base parti-
tioning the topology of the path networks in M and M’ are
equivalent. Assuming M and M’ are both of genus 7, it
is observed in [30] that the path networks should contain
both a minimum spanning tree of the landmark vertices and
2+ non-trivial loops prior to including any paths that form
trivial loops on either mesh.

We compute the base partitioning after the user has se-
lected landmark tunnels and landmark vertices. The non-
landmark Jacobi loops are used to reduce the genus of M
and M’ resulting in two meshes of equal genus, a. B is
computed using the o landmark Jacobi loops of M and M’
as input. The mesh is cut along each of the a landmark Ja-
cobi loops and the edges and vertices in each loop are dupli-
cated resulting in 2« non-trivial loops on the mesh. While
this operation is similar in nature to that of genus reduction,



the 2a Jacobi loops are merged at a later stage making it
unnecessary to fill the resulting holes with scaffold faces.

By default two base edges are introduced into B per
landmark Jacobi loop, requiring two landmark vertices per
landmark tunnel. The vertices can be selected by the user
or assigned automatically. We also compute a constrained
silhouette which can optionally be integrated into the par-
titioning. If selected, this introduces four edges into B by
default. However, for both the constrained silhouette and
landmark Jacobi loops, the user can select different and/or
additional landmark vertices, modifying the resulting num-
ber of base edges in B. When selected, the constrained sil-
houette partitions the mesh into two regions (front and back)
and thus the remaining landmark vertices and landmark Ja-
cobi loops are required to belong to the same region(s) in
both M and M’.

To guarantee that each patch in B is a topological disk
we iteratively introduce a new edge e in B until B is trian-
gulated. For each edge e € B we embed the corresponding
shortest pairs of paths from both M and M’. The edges
are added in a greedy fashion based on shortest combined
path length while ensuring that a minimum spanning tree of
the landmark vertices is generated prior to introducing any
trivial loops in either M or M’.

The paths are computed by first tracing face paths and
then extracting corresponding edge paths to guarantee ro-
bustness against coarse triangulations. The paths are not al-
lowed to intersect mesh edges embedded in base edges of B
nor are they allowed to intersect non-landmark Jacobi loop
edges. As each e is added to B a sweep of the mesh faces
in M and M’ is performed to guarantee that the landmark
vertices contained in the new partitions of M and M’ are
equivalent. Path pairs that do not partition M and M’ in an
equivalent manner are disregarded. Cyclic ordering of edge
paths is maintained at landmark vertices to guarantee a con-
sistent base triangulation. Once B has been triangulated the
remaining vertices of M and M’ are embedded in B using
traditional surface parameterization techniques.

Once a base triangulation has been computed the land-
mark tunnels are merged in B, M, and M’. After merging,
a single edge in B may form a closed loop and/or multiple
edges in B may now share the same endpoints. Edges in B
that fall into either of these categories are split in two and
additional edge paths are computed to complete the base
triangulation.

The base partitioning introduces constraints along the
edge paths embedded in edges of B. As the number of total
constraints increases, the parametric distortion associated
with each embedding can increase as well. In an effort to
minimize this distortion we merge base triangulation faces
into larger topological disks prior to embedding the input
meshes. This reduces the total number of constraints, elim-
inating unnecessary parametric distortion without a costly

iterative step.

(b) (c)

Figure 9. The full resolution hand in (a) has 38218 ver-
tices and is genus 1. In (b) a simplified version of the hand
is shown with 8808 vertices and genus 0. In (c) we show a
50% morph.

Variational Implicit Function. Topological changes in
the cross parameterization are described using variational
implicit functions, 1. For each patch P € B containing at
least one non-landmark Jacobi loop, ¥ p is derived automat-
ically using the parametric descriptions of M and M. Each
1p is a 3-dimensional variational function whose zero level
set describes the evolution of a 2-dimensional source curve
to a 2-dimensional target curve over time. We define ¥p
parametrically to guarantee that the deformation is robust
regardless of mesh geometry.

The time plane corresponding to mesh M is positioned
at time 0 and the time plane for M’ is positioned at a dis-
tance that is equal to the parametric radius of the largest
non-landmark Jacobi loop in P. This guarantees that ev-
ery non-landmark tunnel has adequate time to “close” dur-
ing the map. However, the position of the M’ time plane
can be adjusted to achieve various effects when P con-
tains non-landmark Jacobi loops associated with both M
and M’. Specifically, the proximity of the time planes (in
conjunction with the parametric location of the tunnels) de-
termines whether tunnels from M and M’ will merge to-
gether or whether tunnels in M will “close” entirely prior
to the “opening” of tunnels in M’. We place positive nor-
mal constraints at the base vertices of P in the time planes
associated with both M and M’. This guarantees a valid
1 p is computed regardless of differing mesh genus. Bound-
ary constraints are positioned at all embedded vertices be-
longing to a non-landmark Jacobi loop and a negative nor-
mal constraint is placed at the center of the set of scaffold
faces associated with each tunnel. Four additional posi-
tive constraints are positioned around each embedded non-
landmark Jacobi loop (taking into consideration the position
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Figure 10. A 9-handle torus shown in (a) is partitioned
into two patches. The parameterization of one of the
patches is displayed in (b) and variational constraints for
the patch are shown in (c). Positive normal constraints
are drawn in red, negative normal constraints in blue and
boundary constraints are drawn in black.

of the other Jacobi loops to guarantee conflict-free place-
ment). Figure 10, shows the constraint locations for a 9-
handle torus.

Metamesh. We designate as M the mesh with greater
vertex count and use its connectivity as the basis for our
metamesh. Attribute information for each vertex with re-
spect to M is calculated using the barycentric coordinates
of the face in M that contains the vertex parametrically.
While this is a good starting point, there may be features in
the target mesh that the source connectivity does not ac-
curately capture. The error metric presented in [21] can
be used to determine which mesh edges should be split to
introduce additional detail. We have observed that edges
with large edge lengths with respect to M’ tend to be-
long to regions with the greatest amount of error. Splitting
metamesh edges whose edge length with respect to M’ sat-
isfy |leass|| > 0.5 * || max(eps)|| is a simple way to gradu-
ally refine the mesh.

6 Results

We demonstrate the results of our cross parameterization
scheme by morphing between meshes of differing genus.
The embedding of the surface at each stage in the morph
from Mto M’ is computed as a simple linear interpolation
of corresponding vertex positions between Mand M’. The
variational implicit function value of each metamesh ver-
tex is evaluated and those vertices with negative function
values are clipped out. Figure 9 (a) shows a hand data set
at full resolution. During model acquisition a small tunnel
was introduced between the pointer and middle fingers. A
simplified version of the model that is genus O is shown in
figure 9 (b). By not selecting the tunnel as a landmark, our
algorithm produces a natural map between the two meshes.
Figure 9 (c) shows the morph at 50%.

Our initial alignment scheme reduces reliance on land-
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Figure 11. Nine landmark vertices are associated with
the botijo and amphora meshes: 5 along the constrained
silhouette and 2 per feature Jacobi loop.

marks. We illustrate this by morphing two vases of un-
equal genus: the botijo (genus 5) and amphora (genus 2).
We select two landmark tunnels in each mesh and assign
two landmark vertices per tunnel. Five landmarks are posi-
tioned along the constrained silhouette, see figure 11. The
resulting morph sequence is shown in figure 12. Using the
variational implicit approach, a smooth deformation is au-
tomatically calculated for the non-landmark tunnels. Figure
13 shows a series of meshes with differing genus and con-
voluted geometry.

7 Conclusion

In this paper we have used Morse theory to develop a
formalism to characterize the correctness of a parameteri-
zation scheme. We use this formalism to develop the first
provably robust method to generate maps between meshes
of arbitrary and differing genus. The approach is entirely
parametric and does not fail when the geometry of the input
is overly convoluted. Moreover, our algorithm has no prob-
lem processing coarse meshes with high genus. To set the
initial conditions, we introduce a novel alignment scheme
which reduces the total number of landmarks required.

In this work our main focus has been on the formal
properties and generality of the procedure that constructs
a map between two meshes. In the future we plan to ex-
plore better techniques for optimizing the visual quality of
the map. In particular, we plan to explore alternate path
tracing methods, that consider geometric features other than
path length. Furthermore, when the geometry of M and M’
differs greatly, the use of linear interpolation can cause self-
intersections and unnatural shape transitions. Iterative ver-
tex optimization techniques can improve the visual quality
of the map, however they are still limited when the overall
difference in geometry is too great. We hope to investigate
alternate interpolation schemes that could provide a more
intuitive looking map.



Figure 12. A morph sequence between the botijo and the amphora meshes.
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